• 市区 022-23520328 
  •  
  •  

    微信
  •  

    微博
  •  

    咨询QQ
首 页招考信息考试题库辅导资料面授课程网校课程中公图书直播课一对一交流平台题库

2019天津公务员行测备考:和定最值的灵活求解

推荐:天津公务员考试信息2018-06-29 11:04:00   来源:中公教育    点击:
加入收藏 打印文章

天津中公教育天津公务员考试网助力各位考生顺利通过天津公务员考试!小编为大家带来的是行测技巧


一、具体例题

例1.21个三好学生名额分给5个班级,且互不相等,问分得名额最多的班最多分多少?

例2.20个三好学生名额分给5个班级,且互不相等,问分得名额最多的班级最少分多少?若有21个呢?

例3.21个三好学生名额分给6个班级,且互不相等,问分得名额最多的班级最少分多少个?若有24个呢?若有25个呢?

二、题型介绍

这三个例题均属于和定最值问题。那具体如何判定呢?

和定最值:几个数的和一定,求其中某项量的最大或最小值。

解题原则:由于和是定值,若使其中某项最大,则其它项应该尽可能的小;

若使其中某项最小,则其他项应该尽可能的大。

三、例题解析

例1.求分得名额最多的班级最多分多少个,即求最大项的最大值。若使其尽可能多,则其他班级分得的数量应该尽可能少;但是条件中要求每人都有且互不等,所以至少也应该有1个,互不相等即从1开始的连续自然数,分别有1、2、3、4个。此时已经分出10个名额,还剩11个,都给剩下的班级,则分得名额最多的班级最多得11个名额。

例2.求分的名额最多的班级最少分多少,要想使其最少,则其它班级分得名额应该尽可能多,最大项尽可能小,其他项尽可能多,那么这是一个等均接近的过程。而最等均接近的时候是均分,即为20÷5=4,而题目中要求互不相等,所以此时为连续的自然数,且中间项为4,即为



则此时,分得名额最多的班级至少分得6个名额。

若有21个名额,即为21÷5=4……1,所以均分之后我们得到了中间值是4,而题目中要求互不相等,所以比4多的依次是拿到5、6个,比4少的依次拿到3、2个,构造出了数列:

此时还剩下一个名额,要想让分得名额最多的人班级拿到的尽可能少,这个名额应该考虑给拿的少的人,但是不管给拿到2、3、4、5个中的哪一个,都会出现和其他人相等的情况,不满足“互不相等”,所以6+1,分得名额最多的班级至少分7个。

例3.求分的名额最多的班级最少分多少,要想使其最少,则其它班级分得名额应该尽可能多,最大项尽可能小,其他项尽可能多,那么这是一个等均接近的过程。而最等均接近的时候是均分,即为21÷6=3.5,而题目中要求互不相等,且名额数应该为整数,则此时构造数列为,

此时,分得名额最多的班级至少分得6个名额。

若有24个名额,即为24÷6=4,所以均分之后我们得到了中间值是4,而题目中要求互不相等,所以构造出了数列:

则此时,分得名额最多的班级至少分得7个名额。

若有24个名额,即为25÷6=4余1,所以均分之后我们得到了中间值是4,而题目中要求互不相等,所以构造出了数列:

此时还剩下一个名额,要想让分得名额最多的人班级拿到的尽可能少,这个名额应该考虑给拿的少的人,所以给第四个人3+1=4,则分得名额最多的班级至少分7个。



查看更多天津公务员考试报考指导欢迎访问天津中公天津公务员考试网

责任编辑(董虹汝)

相关文章推荐
历年真题
报考指导
视频专区
推荐课程
推荐活动